A Data Architecture for Consumer RFID Applications

Gaetano Borriello

Department of Computer Science & Engineering University of Washington

(some material courtesy of C. Diorio, UW/CSE Faculty and Founder of Impinj, Inc.)

Outline

- RFID Basics
- The UW RFID Ecosystem
- Our Initial Applications
- Data Architecture
- Future Work

25 June 2006

MobiDE 2006 - Chicago, IL

Identifying Objects

- Use innate characteristics of the object
 - □ Faces, fingerprints, etc.
- Add markings to it
 - Engraving, bar codes
- Use non-visual modalities
 - □ RF, magnetic media

Can a specific instance be identified or just the class?

25 June 2006

MobiDE 2006 - Chicago, IL

3

Basics

- Radio-frequency identification
 - Using radio frequency (RF) signals to identify (ID) an object
 - Does not require line-of-sight
- Tags are attached to an object
 - □ ID number in tag <u>uniquely</u> identify an object, not just its class
 - Current tags use 64 to 128 bits
 - Can include other information besides ID
 - Current state
 - Location
 - History

25 June 2006

MobiDE 2006 - Chicago, IL

RFID Basics

- RFID systems comprise tags and readers
 - Tags are placed on objects
 - Readers interrogate tags
- Tags can be active or passive
 - Active tags: battery, expanded capability, longer range
 - Passive tag: receives power from RF field, limited capability

Active Tag

Passive Tag

25 June 2006

MobiDE 2006 - Chicago, IL

The elements of an RFID system

- Tags
 - Carries the ID number and very limited processing capability
- Readers
 - Tag communicates ID to "reader"
 - Readers emit RF and are regulated differently around the world
- Networking infrastructure
 - Reader is connected to a network and communicates tag IDs to interested parties
- Databases
 - Collect the "read events" and log them with time/place
- Applications and their user interfaces
 - Browse the database looking for correlations and patterns

25 June 2006

MobiDE 2006 - Chicago, IL

0

Applications in Supply-Chain

- Automation
 - RFID will boost throughput
 - Barcode scanning is slow
 - Barcode is applied manually
 - □ RFID = agile supply chain
 - Reduces out-of-stock
 - Reduces shrinkage
 - Increases inventory control
- Package tracking
- Airline tickets, luggage
- Pharmaceuticals
- Anti-counterfeiting
- Asset tagging, archiving

25 June 2006

MobiDE 2006 - Chicago, IL

Example: Impinj ZumaRFIDTM Chip

- Field-rewritable tag
- 8m read range; 6m write range
- >500 tags/sec read rate; >15 tags/sec write rate
- Designed for dense-tag environments

25 June 2006

Example – Impinj ZumaRFIDTM Tags

25 June 2006

MobiDE 2006 - Chicago, IL

15

UW CSE RFID Ecosystem

- Create a microcosm of a world saturated with identifiable objects
- Explore applications, systems, and social implications
- Do it while there is still time to learn and adapt
- Use our building to do it

25 June 2006

MobiDE 2006 - Chicago, IL

The opportunity

- Focus on supply chain has left other areas open
 - Will RFID tags have broader impact than simply replacing bar codes on more expensive items?
 - Will we be able to manage the data generated by all the readers that will be installed?
 - Can we devise valuable and/or interesting consumer applications through tagging of objects?
 - Can we architect systems to make it easier to safeguard privacy and address security concerns?

25 June 2006

MobiDE 2006 - Chicago, IL

17

The research question

- What are the implications
 - for technology, business and society
 - of having a "number on everything"?
 - Merge physical and virtual worlds
 - Every object is an index into a world-wide database
 - Every object has its own history
 - Track object over its entire lifetime
 - Analyze trends in user habits
- The ecosystem is a way to get a view into this future

25 June 2006

MobiDE 2006 - Chicago, IL

An RFID ecosystem

- Tags attached to objects of interest (computers, books, lab equipment, etc.)
- Readers deployed at regular locations (hallway ends, etc.)
- Mainly used for sensing and detection
- Actuation: Mobile readers, static tags (1 reader/person)
 - Tags attached to building locations of interest
 offices, posters, etc.
 - Users equipped with phone-based NFC readers
 - Mainly used for actuation
- Goal: provide a living laboratory for interesting RFID <u>systems research</u>

25 June 2006

MobiDE 2006 - Chicago, IL

19

Steps in rolling out the ecosystem

1. Testing of likely readers and tags

25 June 2006

MobiDE 2006 - Chicago, IL

Testing issues

- Mounting of antenna
- Distance between antennas and tags
- Orientation of tag to antenna
- Material that tag is attached to
- Density of tags and material around them
- Rate of transit of tag past antenna

25 June 2006

MobiDE 2006 - Chicago, IL

Installation

- FCC requires standoff to people (> 9in.)
 - □ Ceiling mounting, behind wall or glass, etc.
- Orientation of antennas to cover hallways
 - Multiple antennas at angles to each other
- Position in hallways
 - Try to identify a small enough region where tag is likely to be

25 June 2006

MobiDE 2006 - Chicago, IL

Data architecture issues

- Privacy, privacy, privacy
 - Lots of tags already exist that aren't ours
 - Revocability of data
 - Data mining
- Scaling to more readers and more apps
 - Don't tax basic infrastructure
 - Incremental addition of resources

25 June 2006

MobiDE 2006 - Chicago, IL

25

Steps in rolling out the ecosystem

 4. Deploy applications for study and use (we've done a couple so far)

25 June 2006

MobiDE 2006 - Chicago, IL

Deployment issues

- Develop mainstay applications
 - Likely to always be needed
- Develop API for new experimental apps
 - Allow anyone to develop their own easily
- Privacy controls
 - Limiting what can be discovered and mined

25 June 2006

MobiDE 2006 - Chicago, IL

27

Data architecture

- Three main concerns
 - Privacy including revocability
 - Scalability to more infrastructure and more apps
 - API for app development

25 June 2006

MobiDE 2006 - Chicago, IL

What are we afraid of?

It is even more serious . . .

- Ability to track objects
- Ability to track people through their objects
- Ability to mine associations
 - People to objects
 - People to people
- Fears
 - Targetted advertising
 - □ "Big Brother" government
 - Personal security

25 June 2006

MobiDE 2006 - Chicago, IL

Data mining

- What are the implications of tagging everything?
 - Can use other data to link tag data
 - E.g., unknown tag passes by a reader, credit card transaction nearby, same tag seen again later, same credit card used nearby that location, tag may belong to that person, next time I see tag it implies that person is present
- Motivation for password protected tags and scramble tags (that change their ID)

25 June 2006

MobiDE 2006 - Chicago, IL

31

Application: Object Tracker (finding lost objects, inventory control)

25 June 2006

MobiDE 2006 - Chicago, IL

Application: Human Social Dynamics Study of evolution of human interactions Paths walked, objects transferred, etc. **To Comy Joseph Contacts (same jace at same tone) Outry Joseph Contacts (same jace at same ton

Application: Woodland Park Zoo

- Track visitors to zoo
- Pattern through zoo
- How groups break up and merge
- Attractor exhibits (where people go first)
- Personalized web pages for visit and other items of possible interest – extend visit

25 June 2006

MobiDE 2006 - Chicago, IL

35

Node servers

- Reside inside the reader hardware
 - Our readers run Linux and have code easily added
 - Can broadcast tag reads in the vicinity of the reader
 - Interacts with permissions server to determine if tags are registered
 - Caches tagID permissions for efficiency
- Tag's privacy registration determines whether:
 - Tag can be routed to the cluster server for permanent storage
 - Tag can be broadcast locally
- Streams "storable" tag reads to Cluster Server (each node server is paired with one cluster server), and buffers if Cluster Server unavailable

25 June 2006

MobiDE 2006 - Chicago, IL

37

Privacy

- Users must explicitly authorize each application to access data generated from one of their tags
- Centralized model
 - Tag ID changes at each Ecosystem layer
 - System uses multiple encrypted/scrambled IDs to create a blind system so that the information from various parts of the system can not be combined
 - Node servers encrypt all storable tags using ecosystem key
 - Cluster servers encrypt tag events using application's public key
- Broadcast model
 - When broadcasting a TagID, a random number is appended to the TagID and encrypted with the TagID itself for broadcast, only a user that knows the TagID can make sense of the packet

25 June 2006

MobiDE 2006 - Chicago, IL

Cluster Server

- Routes tag reads from node servers to interface servers for enabled applications
- Stores all incoming tag reads to local DB for archiving
- Periodically checks its node servers to make sure they are still running

25 June 2006

MobiDE 2006 - Chicago, IL

39

Interface Server

- Each app gets its own 'client' of the RFID ecosystem
 - Provisioned by whoever deploys app
- Events are generated on this server based on the application's setting of event-generation parameters
- Compute higher-level events based on raw tag read data from cluster servers, thereby removing computation load off the centralized cluster servers
- Maintain connections with applications
- Stream events to applications
- Respond to event queries by applications (possibly on archived data)

25 June 2006

MobiDE 2006 - Chicago, IL

Application Servers

- Actually run application logic and user interfaces
- Could be same physical server as their own interface server
- Provisioned by whoever deploys app

25 June 2006

MobiDE 2006 - Chicago, IL

41

Reasons for the layered design

- Compartmentalize reader features (node server)
- Separate privacy concerns into a permission server
- Make the system scalable by not trying to do to much in a standard way (use interface servers to generate specialized events for apps)
- Retain control of data stores in cluster servers
- Make it easy to incorporate a data stream processing system e.g., Borealis (at the cluster server)

25 June 2006

MobiDE 2006 - Chicago, IL

Interface Server: Event Hierarchy

- Interface servers provide a hierarchical event structure
 - Uses low-level events to generate higher-level events
 - Starting from tag reads to whatever is defined by applications
 - Some will be fairly common and are pre-defined
- Applications are given additional tag meta data
 - Tag owner
 - Item of attachment

PersonAssociation

PersonContact

PersonAtLocation

TagAtLocation

25 June 2006

MobiDE 2006 - Chicago, IL

43

Events

- Each event type generated by an interface server can be adjusted by the application via interface server parameters
 - Events can be turned on/off
 - Even parameters can be changed, e.g., different timeout for defining the presence of a tag
 - New events can be created, e.g., tag followed a path through building

25 June 2006

MobiDE 2006 - Chicago, IL

Robustness

- All servers in the system actively work to reestablish lost connections.
- All data received from each input server is buffered until output server connection is reestablished.
- All input servers are determined at runtime from a database. Additional servers can be added on the fly.

25 June 2006

MobiDE 2006 - Chicago, IL

49

Audit Trails

- When tag data is deleted some events will also need to be deleted
 - Any event that was determined from the data being deleted should also be removed
- Event hierarchy helps maintain relationships between events
- E.g., instead of generating a four-way contact we generate 6 two-way contacts
 - Makes it easy to delete data from the system (even for one tag)
 - Only have to delete dependent events and not generate replacement events

25 June 2006

MobiDE 2006 - Chicago, IL

Future work

- Tags are getting more interesting all the time
 - □ Tags with sensors motion, temperature, etc.
- Tag have increasing memory
 - Database can be distributed into tags
- Tag data security
 - Passwords, registrations who keeps it all straight
- Study of real application deployments
 - Can users manage their tags? What are the right default behaviors?

25 June 2006

MobiDE 2006 - Chicago, IL

51

Application: Elder Care (w/ Intel Seattle)

- What objects people use is a good indicator of what they are doing
- Track objects using WISP tags
- Use to infer activities of daily living (ADLs)
- Trend analysis mix/duration of activities

25 June 2006

MobiDE 2006 - Chicago, IL

